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We present a study of dissociative electron attachment and vibrational excitation processes in electron collisions
with the CF3Cl molecule. The calculations are based on the two-dimensional nuclear dynamics including the C-Cl
symmetric stretch coordinate and the CF3 symmetric deformation (umbrella) coordinate. The complex potential
energy surfaces are calculated using the ab initio R-matrix method. The results for dissociative attachment
and vibrational excitation of the umbrella mode agree quite well with experiment whereas the cross section
for excitation of the C-Cl symmetric stretch vibrations is about a factor-of-three too low in comparison with
experimental data.
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I. INTRODUCTION

Dissociative electron attachment (DEA) to polyatomic
molecules typically involves multidimensional nuclear dy-
namics. However, because of the significant computational
effort necessary to obtain multidimensional complex (i.e.,
including both real and imaginary parts) energy surfaces, most
theoretical DEA calculations have been performed within the
one-dimensional approximation. In these calculations, it is
usually assumed that the DEA process involves one reaction
(dissociating) coordinate, roughly corresponding to one of the
normal modes of the target molecule. This approximation is
sometimes too crude and sometimes completely unjustified.
Therefore, a lot of effort was devoted recently to calculations
of multidimensional DEA dynamics [1–6]. These calculations
address two important problems in the physics of DEA
processes. First, we want to know which dissociation channels
are the most important and what is the energy range where
a particular bond rupture can occur. This information is
especially important for chemical control. Second, we want
to know the importance of different vibrational modes in a
particular DEA process and the final-state vibrational-energy
distribution in the fragments.

The most common method for studies of dynamics on
multidimensional surfaces is the wave-packet propagation
technique [7]. Recently, this approach was used to calculate
the DEA cross sections for several polyatomic molecules (e.g.,
for CO2 [8] or H2O [9]) employing the multiconfiguration
time-dependent Hartree (MCTDH) method [10,11]. An alter-
native is to develop classical and semiclassical methods for
treatment of nuclear dynamics. We recently reformulated [1]
the quantum method for DEA in terms of the time-independent
Schrödinger equation and connected this treatment with the
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classical approximation. The method was applied to the
process

e + CF3Cl(ν2,ν3) → CF3Cl− → CF3(ν ′
2) + Cl−, (1)

where ν2 and ν3 stand for the symmetric deformation vi-
brations (the so-called umbrella mode) and the symmetric
stretch vibrations, respectively, and ν ′

2 represents the umbrella
mode of the free CF3 radical. The two-mode approximation
for this process can be justified by existing experimental
data [12] on vibrational excitation (VE) of this molecule.
The two-dimensional potential energy surface (PES) was
calculated ab initio. However, we used a model semiempirical
width (the imaginary part of the complex PES). This led
to some inconsistencies and instabilities in our calculations
discussed below. In the present paper we employ the ab initio
molecular R-matrix method for calculation of the complex
PES. This allows us to remove the deficiencies in our previous
calculations and to improve agreement with experimental data.
We also calculate VE cross sections for the C-Cl symmetric
stretch and the umbrella mode.

The rest of the paper is organized as follows: In Sec. II
we discuss construction of the complex PES from the ab
initio calculations and the theoretical approach to treatment of
nuclear motion. In Sec. III we discuss details of our R-matrix
scattering calculations in the fixed-nuclei approximation. In
Sec. IV we present our results for DEA and VE.

II. THEORETICAL APPROACH

In our previous work [1] we constructed a two-dimensional
local complex potential (LCP) model for DEA and resonant
VEs of CF3Cl. The model takes into account the C-Cl
stretching vibrational mode and umbrella vibrational mode
of the CF3 radical. The LCP model [1] was based on a
complex PES constructed from the one-dimensional potential
curves using an arbitrary extension in the coordinate corre-
sponding to the umbrella vibrations of the CF3 fragment.
In addition, the real part of the complex potential curve
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TARANA, HOUFEK, HORÁČEK, AND FABRIKANT PHYSICAL REVIEW A 84, 052717 (2011)

for the temporal anionic complex was obtained using the
ab initio methods for bound-state calculations, while the
imaginary part was obtained by fitting [13] the experimental
results of Mann and Linder [12]. Cross sections of the DEA
calculated using the two-dimensional model are a factor of
three higher than experimental values and one-dimensional
nonlocal calculations [13]. This discrepancy was attributed
to the inconsistencies between the real and imaginary part
of the complex PES used in the model [1]. It is the aim
of this work to construct a two-dimensional model of the
nuclear dynamics along the same lines as in [1], but using
a more consistent complex PES. We performed molecular
ab initio R-matrix scattering calculations in the fixed-nuclei
approximation for a set of nuclear geometries including the
degrees of freedom corresponding to the C-Cl distance R and
to the F-C-Cl angle ϑ . We fit the eigenphases obtained from
these R-matrix calculations at energies close to the resonance
position to the Breit-Wigner formula with an energy-dependent
background [14] and, by using the resonance position and
width, we constructed the complex PES. This approach is free
of any presumption regarding the dependence of the complex
PES on the F-C-Cl angle and removes the need for any arbitrary
extension in this coordinate, as used in [1]. In addition, the
fixed-nuclei resonance width is calculated at the same level of
the theory as is the position.

The ab initio molecular R-matrix method is well known and
widely used for fixed-nuclei calculations of electron collisions
with small and medium-sized molecules. We refer the reader
to a recent review article by Tennyson [15] and to references
therein for a description of the method and its technical
implementation.

The eigenphase sums calculated using the R-matrix method
for a set of nuclear geometries were fit using the Breit-
Wigner formula, which takes into account the dominant dipole
component of the potential in the outer region. The Breit-
Wigner formula is equivalent to the one-pole approximation
of the R-matrix [14]. This approximation is based on the
assumption that, at energies close enough to the resonance
position, the R-matrix can be well approximated by the
following expression:

R(E) = R0 + γ 2
λ

Eλ − E
, (2)

where R0 is the background R-matrix including all the terms
due to remaining poles of the R matrix, Eλ is the position
of the pole closest to the resonance, γλ is the corresponding
amplitude, and E is the scattering energy. To obtain the Breit-
Wigner formula from Eq. (2), we assume that the term R0 is
a slowly varying function of energy as it is summed over all
the other R-matrix poles. The eigenphase sum δ may then be
expressed [14] as

δ(E) = tan−1

( 1
3�λ

Eλ + �λ − E

)
− φ(E), (3)

where �λ is the resonance width and �λ is the level shift
(amount by which the resonance energy is shifted from the
pole Eλ). The first term of Eq. (3) describes the resonance
contribution and the second term [φ(E)] is the potential
scattering contribution. The relations between �λ, �λ, φ, and

general solutions of the Schrödinger equation on the R-matrix
boundary are given in Ref. [14]. In order to fit the width
and the position of the resonance using this model, we first
solve the Schrödinger equation with the dipole potential in
the outer region. The corresponding dipole moment for every
nuclear geometry is obtained from the ab initio calculation
of target properties as a part of the fixed-nuclei scattering
calculations. With the solutions on the R-matrix boundary,
we can establish the relation between the background phase
shift φ(E), width �λ, level shift �λ, and the quantities in
Eq. (2). This allows us to fit the model R-matrix amplitude
γλ, pole Eλ, and constant background R-matrix R0 using
the nonlinear least-squares technique to the ab initio eigen-
phase sum. These directly determine the width �λ and
resonance energy Eλ + �λ. This fitting allows us to construct
the complex PES U (R,r) − i�(R,r)/2 in the region where the
anionic state is metastable. In the region where the resonance
turns into a bound state, the corresponding bound-state energy
was calculated as well as the potential energy curve V (∞,r)
of the free CF3 fragment. The complex PES was constructed
using cubic splines in two dimensions. In order to study the
final-state interaction on the anionic surface during the DEA
process, it was necessary to have the bound anionic PES also
for large C-Cl internuclear separations, where the ab initio
results are not available. It was constructed by extrapolation
of the ab initio results as described in [1] to satisfy the
condition U (R → ∞,r) → V (∞,r). The bound part of the
anionic potential energy surface was extrapolated to match the
CF3 fragment potential curve asymptotically, as discussed in
Ref. [1].

The LCP calculations of the DEA and VE presented here
were performed in a manner similar to that described in
Ref. [1]. The basic equation of the LCP theory reads

[Tρ + Tr + U (ρ,r) − i�(ρ,r)/2 − E]χE(ρ,r)

= Vdk(ρ,r)ζi(ρ,r), (4)

where ρ and r are the reaction coordinates introduced to
decouple the two-dimensional operator of the nuclear kinetic
energy [1], U (ρ,r) − i�(ρ,r)/2 is the complex PES of the
temporal anion, Vdk(ρ,r) = √

�(ρ,r)/(2π ) is the amplitude
for electron capture into the resonance state, and ζi(ρ,r) is
the vibrational wave function of the neutral molecule in the
initial state. Tρ + Tr is the operator of nuclear kinetic energy
corresponding to our two-dimensional model, as discussed in
Ref. [1]. In our previous work [1] the wave function χE(ρ,r)
was expanded in the basis of vibrational states φν(r) of the
CF3 fragment in the harmonic approximation given by

[Tr + V h(∞,r) − εν]φν(r) = 0, (5)

where εν are the corresponding eigenenergies εν = De +
ω

f

2 (ν + 1/2), ωf

2 is the harmonic frequency of the CF3 radical
umbrella mode, and V h(∞,r) is the corresponding free CF3

radical potential curve in the harmonic approximation with
the minimum corresponding to the C-Cl bond-dissociation
energy. As explained in Ref. [1], the projection of Eq. (4)
onto φν(r) then yields a set of coupled differential equations
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for channel wave functions of the variable ρ with coupling
potential Uνν ′(ρ) given by the equation

Uνν ′ (ρ) =
∫

φν(r)[U (ρ,r) − i�(ρ,r)/2 −V h(∞,r)]φν ′(r)dr.

(6)

One note should be made at this point regarding the asymptotic
behavior of the coupling potential. The PES in Ref. [1] was
extrapolated in such a way that U (R → ∞,r) → V (∞,r).
The extrapolation asymptotically matches the ab initio po-
tential energy curve of the CF3 fragment, not its harmonic
approximation. As a consequence, limρ→∞ Uνν ′ (ρ) �= 0, as
can be seen from Eq. (6). Since the coupling of different
vibrational channels of the CF3 radical does not vanish for
ρ → ∞, the population of different vibrational states of CF3

produced by the DEA process does not converge well. This
deficiency is corrected in the present work. The harmonic
approximation for the potential energy curve V h(∞,r) of the
CF3 radical is not used, and the full ab initio potential curve
V (∞,r) is employed in both Eqs. (5) and (6). Therefore, in
our present calculations we expand the wave function χE(ρ,r)
in the basis set of eigenfunctions ϕν(r) given by

[Tr + V (∞,r) − εν]ϕν(r) = 0, (7)

where εν are the vibrational energies of the CF3 fragment
without the harmonic approximation. The corresponding
coupling potential has the following form:

Uνν ′ (ρ) =
∫

ϕν(r) [U (ρ,r) − i�(ρ,r)/2−V (∞,r)] ϕν ′ (r)dr.

(8)

Therefore, in the present work the extrapolated PES is
consistent with the asymptotic treatment of the CF3 fragment
that allows for convergence of the population of vibrational
states of CF3 produced by the DEA process.

In the present work we also use a different method to
solve the system of coupled radial equations. In Ref. [1] we
used direct outward integration of the system of differential
equations from the inner region and inward integration
from the asymptotic region with subsequent matching of
the solutions to satisfy the boundary conditions. The direct
integration has a limitation in the number of channels included
in the calculation. With increasing number of closed channels
included, their exponentially increasing contribution starts to
be more pronounced and the calculation becomes unstable.

Here we employ the multichannel version of the exterior
complex scaling (ECS) method in the discrete variable repre-
sentation (DVR) basis set [16], which is free of this problem.
This method has previously been successfully used in the
context of the nonlocal resonance model for calculations of
DEA and VE in case of diatomic molecules [17].

III. SCATTERING CALCULATIONS IN THE
FIXED-NUCLEI APPROXIMATION

In order to obtain the two-dimensional complex PES
necessary to construct the LCP model, we performed R-matrix
scattering calculations in the fixed-nuclei approximation for a
set of nuclear geometries important for DEA and VE. For

every nuclear geometry, we calculated the eigenphase sum in
the energy interval around the fixed-nuclei resonance and fit
it to the Breit-Wigner formula with background, as described
above. The resonance position and width as a function of the
nuclear coordinates represent the complex PES used in the
local complex approximation. In the region where the CF3Cl−
anion is stable against autodetachment and the potential
becomes real, the surface is represented by the bound-state
energies calculated using the R-matrix approach.

As previously discussed [1], in our calculations the PES
V and U for the neutral molecule and for the anion are
represented using two coordinates: the C-Cl internuclear
separation R and the distance r between the C atom and the
plane formed by the fluorine atoms, r = −RCF cos ϑ , where ϑ

is the F-C-Cl angle and RCF is the F-C bond length. Since we
do not include the C-F stretching mode in our considerations,
RCF is fixed and set to 1.342 Å, which corresponds to the
equilibrium geometry of the neutral CF3Cl. The fixed-nuclei
R-matrix calculations were performed for a two-dimensional
region of nuclear coordinates with R from 3a0 to 12a0 and
with ϑ from 55◦ to 90◦. In the present work we only consider
excitation of the low vibrational states of the CF3 fragment, so
we do not take into account any effects caused by the flipping
of the radical (ϑ > 90◦).

Calculations were performed using Gaussian-type orbitals
(GTOs) and the UK polyatomic R-matrix code [15]. The
highest symmetry available in the polyatomic code is Cs which
is an Abelian subgroup of the true C3v symmetry of CF3Cl.

A. Target representation

CF3Cl was represented using Hartree-Fock (HF) molecular
orbitals (MOs). In order to construct a target model sufficient
for the purpose of the dynamical calculations, we performed
several tests with different target models to select the best
compromise between the quality of the target representation
and the computational tractability of the (N + 1)-particle
problem.

The CF3Cl target states were represented using a complete
active space (CAS) configuration interaction (CI) wave func-
tion. The CF3Cl molecule contains 50 electrons. Only 18 of
them belong to the inner shells; the 32 remaining electrons
form the valence shells and, in principle, can contribute
to the chemical bonds. This complicates the construction
of the target CI model in several aspects. Enough valence
electrons should be included in the CI active space to treat
electron correlation properly. In addition, it is necessary to
treat the target symmetrically and to ensure that all elements
of the degenerate pairs of MOs are included in the CAS. On the
other hand, inclusion of each orbital occupied in the HF ground
state leads to a rapid increase in the dimension of the target
and anionic CI Hamiltonians. In addition, our fixed-nuclei
calculations aim to study the dependence of the resonance on
the nuclear geometry. This further raises the limitations on the
(N + 1)-particle CI calculation as we need to repeat it many
times.

The first CAS CI target model considered in our calculations
includes eight active electrons which occupy four orbitals
in the HF ground-state determinant with the highest orbital
energies. We allow these electrons to occupy the five lowest
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virtual orbitals (VOs). Using the notation of the Cs point group,
this CAS model can be expressed as follows:

(1a′ . . . 15a′)30(1a′′ . . . 6a′′)12(16a′ . . . 21a′,7a′′ . . . 9a′′)8 (9)

or

(1a′ . . . 15a′)30(1a′′ . . . 6a′′)12(16a′ . . . 20a′,7a′′ . . . 10a′′)8,

(10)

as the ordering of VOs changes with nuclear geometry. Using
the notation of the C3v point group, the active electrons are
taken from the following set of HF orbitals: (1a2,10a1,7e). The
degenerate e orbitals in this set are well localized on the chlo-
rine atom, the 10a1 orbital is spread along the C-Cl bond, and
the 1a2 orbital contributes to the C-F bonds. The calculations
were performed using the 6-311G* GTO basis set [18,19].

Representation of the target in the subsequent scattering
calculation can be qualified by comparison of several proper-
ties calculated using our model with the previously published
results. To check our target representation, we calculated
the vertical excitation energy (because the excited target
states are used in the scattering calculations), dipole moment
of the target ground state (because it represents the major
contribution to the interaction with the projectile in the outer
region), and static dipole polarizability, which allows us to
estimate the representation of the polarization effects in the
scattering calculation. Table I compares the values calculated
using our models (at equilibrium nuclear geometry) with the
previously published data. As can be seen, this target model
(denoted Model 1 in Table I and elsewhere in the text) gives
a reasonably good representation of the ground-state dipole
moment because it is relatively small, although our calculation
gives us a larger value than found experimentally. The vertical
excitation energy calculated here is almost 2 eV higher than
the experimental value [21]. This result suggests that the
representation of the target excited states is limited. To the best
of our knowledge, no experimental or advanced theoretical
calculation exists of the lowest excited state (3E). Our target
model gives its energy as 8.453 eV above the ground state.
In our scattering calculations, we are interested in scattering
energies below 4 eV, where all the electronically excited
channels are closed. We expect (and our test calculations
described below suggest it) that inclusion of the low-excited
target states in the close-coupling (CC) expansion leads only
to a small correction of the resonance position and width.

In order to estimate how well the polarization effects are
represented in our scattering calculations, we evaluated the

TABLE II. Vibrational frequencies calculated using different
CAS CI models and comparison with previously published results.

Model 1 Model 2 Bibliographic data

ω2 (cm−1) 854.42 956.48 775.12 [23]
ω3 (cm−1) 433.08 534.13 463.33 [23]
CF3 fragment (ω2) (cm−1) 755.53 745 701 [24]

static dipole polarizability of the target ground state. We
used the sum-over-states formula with the set of target states
included in the scattering calculation. We found that the lowest
six target states represent a considerable contribution. Adding
more target states did not increase the value. As can be seen in
Table I, our calculated value is considerably smaller than the
experimental results.

Since the higher excited states do not contribute signifi-
cantly to the polarizability, this discrepancy can be tentatively
attributed to the small number of active electrons and orbitals
used in our target model. A good representation of the
polarizability would require the presence of more diffuse
MOs which are too high in energy to be included in the
present target calculations. However, the previously published
one-dimensional calculations of the nuclear dynamics for
CF3Cl [13] show that the polarization effects have a minor
effect on the results of the LCP calculations.

The target properties discussed above are all calculated
at the equilibrium nuclear geometry. However, for our cal-
culations of the nuclear dynamics it is important to know
how well our target model can reproduce the harmonic
vibrational frequencies of the neutral molecule. Comparison
of our calculated values with the previously published result is
shown in Table II. Target model 1 gives the values with 10%
accuracy when compared with the experimental results. This
small difference can be tentatively attributed to the neglect of
other vibrational degrees of freedom in our model.

We conclude that CAS CI model 1 represents the neutral
target sufficiently well to be used in our ab initio R-matrix cal-
culation. R-matrix calculations performed at the equilibrium
nuclear geometry can be used to obtain the vertical attachment
energy. A correct value of this quantity is essential for our
calculations of the resonant nuclear dynamics. However, CAS
CI model 1 of the target leads to a value which is 1.3 eV
above the experimental value determined by Aflatooni and
Burrow [25]. Additional test calculations show that this result
is due to insufficient treatment of the electron correlation

TABLE I. Target properties calculated using different CAS CI models at equilibrium nuclear geometry and comparison with the
previously published results.

Model 1 Model 2 Bibliographic data

GTO basis 6-311G* cc-pVDZ
No. of active electrons

No. of VOs 8/5 4/11
Ground-state energy (a.u.) −795.787343 −795.627044
Vertical excitation energy 1E (eV) 9.545 9.057 7.7 ± 0.1 [20,21]
Vertical excitation energy 3E (eV) 8.476 7.897
Dipole moment (a.u.) 0.378 0.410 0.197 [22]
Static dipole polarizability (a.u.) 1.32 0.158 38.6 [22]
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in the CC expansion of the (N + 1)-electron wave function.
Since a further increase of the number of active electrons
or VOs included in the target model leads to an intractable
diagonalization of the (N + 1)-electron Hamiltonian, we
decided to model electron correlation by modification of the
primary GTO basis set, where we modified the Gaussian
exponent corresponding to the p-orbital of the chlorine atom
in order to get the energy of the lowest unoccupied molecular
orbital (LUMO) closer to the experimental value of the vertical
attachment energy. We expect that this modified LUMO helps
to represent the discrete component of the resonant wave
function of the temporal anionic complex better than the linear
combination of VOs obtained in model 1. This idea is similar
to the method developed in Ref. [26] and is used to calculate
the position and width of the resonance. The modified HF
orbitals were calculated using the cc-pVDZ GTO basis set [27].
To approach the correct value of vertical attachment energy,
we changed the exponent of the uncontracted p orbital of
chlorine from 0.162 to 0.094. In addition to this modification
of the exponent, we also restricted the CAS CI model to four
active electrons from the highest occupied molecular orbital
(HOMO) and HOMO-1 and allowed their excitations into the
11 lowest VOs. By using the notation of the Cs point group,
this CAS model can be expressed as follows:

(1a′ . . . 16a′)32(1a′′ . . . 7a′′)14(17a′ . . . 25a′,8a′′ . . . 11a′′)4

(11)

or

(1a′ . . . 16a′)32(1a′′ . . . 7a′′)14(17a′ . . . 24a′,8a′′ . . . 12a′′)4,

(12)

because the ordering of VOs changes with the nuclear
geometry. Therefore, in this model we extend the space of
VOs and reduce the number of active electrons as compared
with model 1. The properties of the target calculated at the
equilibrium nuclear geometry are summarized in Table I
(we refer to this model as Model 2 in the table and elsewhere
in the text below). The results show that, although the
ground-state energy is higher than the value calculated using
model 1, the vertical excitation energy into the 1E state is
lower and closer to the published reference value. This CAS
model of the target also gives a lower vertical excitation
energy to the 3E state than does model 1. Table I also shows
that this modified model gives a larger value of the dipole
moment than does model 1; however, its value is still low
enough to not introduce a significant error in the position and
width of the resonance. We also calculated the static dipole
polarizability at the equilibrium nuclear geometry by using
this model and found that its value is significantly smaller than
that given by experiment. This can be because of the limited
representation of the polarization effects by the primary GTO
basis set. Although both our CAS models of the target have
their limitations, model 2, which uses the modified primary
GTO basis, correctly represents the vertical attachment energy,
which is the quantity that is essential for the DEA calculations.

In addition to the CAS model of the target, we need a
representation of the CF3 fragment in our LCP calculations in
order to properly extrapolate the potential energy surfaces. In
order to keep the model of the fragment consistent with target

model 2, we treated the CF3 radical at the self-consistent-field
(SCF) level because all the excitations of the active electrons
in model 2 of the CF3Cl target describe the C-Cl chemical
bond. Therefore, any CI excitation model of the fragment
would introduce a correlation which is not explicitly included
in the target model. In order to check the quality of this
representation, we calculated the harmonic frequency of the
umbrella mode. Its comparison with the previously published
value is given in Table II. It shows that our calculated harmonic
frequency is slightly higher than the experimental value, but
they agree sufficiently well to confirm that our model is a
suitable choice for representation of the CF3 radical.

B. Scattering model

The R-matrix calculations were performed using a sphere
with radius r� = 15a0. The corresponding continuum basis
set was represented by single-center uncontracted GTOs with
exponents optimized by the program GTOBAS [28]. Partial
waves up to l = 3 (9s, 7p, 7d, 7f ) were used. The deletion
threshold in the orthogonalization procedure for the continuum
orbitals [15] was set to δthr = 9 × 10−6. This value was
found by performing calculations in the static exchange
approximation. It gives a stable representation of the scattering
continuum and does not show any problems related to linear
dependence of the continuum orbitals.

In order to obtain the position and width of the fixed-nuclei
resonance as a function of nuclear geometry we performed a
scattering calculation of the eigenphases and fit them using the
Breit-Wigner formula with the energy-dependent background
[14], as discussed above. For the neutral target, we tested both
CAS CI models discussed above. First, the lowest 16 CI target
states calculated using model 1 were used in the CC expansion
and the R-matrix calculation at equilibrium nuclear geometry.
This calculation gives converged results with respect to the
number of target states included.

The corresponding cross section for elastic 2A1 scattering is
presented in Fig. 1 where we also compare it with calculations
of Beyer et al. [29]. This curve (designated as Target model 1)
shows the peak around 3.3 eV, which is significantly above
the results obtained by the experimental work of Underwood-
Lemons et al. [30] and by the theoretical calculation of
Beyer et al. [29]. Since a further increase of the number of
target states included in the CC expansion did not lead to
any considerable shift of the peak toward lower energies, it
suggests that this artificially high position of the resonance
is not due to an incorrect representation of the polarization
effects [31] but rather to an incompleteness of the target
model. Therefore, we performed another set of scattering
calculations using the target CI model 2 described above.
Since this model was constructed to reproduce the correct
vertical attachment energy, it also gives the correct position of
the resonance peak in the R-matrix calculation carried out at
the equilibrium nuclear geometry (as plotted in Fig. 1). The
rapid increase of the cross section at lower energies is due to
the long-range dipole potential included in the outer region.
For a molecule with a nonzero permanent dipole moment
and fixed orientation, the partial elastic cross section diverges
at zero energy [32,33], which is a feature observed in our
cross section but not in the calculation of Beyer et al. [29],
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FIG. 1. (Color online) Cross section for the elastic electron
scattering off CF3Cl (2A1 symmetry) calculated in the fixed-nuclei
approximation at equilibrium nuclear geometry. Calculations em-
ploying target model 1 are compared with results calculated using
model 2, with experimental results [30], and with other R-matrix
calculations [29].

apparently because the dipole effects were not completely
included in their work. On the other hand, since our dipole
moment at the equilibrium internuclear separation is too big
(see Table I), it is evident that our elastic cross sections are
strongly overestimated at low energies.

There were 12 target states included in our CC expansion
(the three lowest in the singlet and triplet states of A′ and
A′′ symmetries). The R matrix was propagated in the dipole
potential given by the target CAS CI model (as discussed
above) and in the potential given by the dipole and quadrupole
coupling of different scattering channels [15]. On the other
hand, the R-matrix calculation of Beyer et al. [29] was
performed at the level of static exchange with polarization
which treats the electron correlation in a different way than
does our CAS CI model. This can partially explain the
quantitative difference between the two calculations at higher
energies.

Figure 1 also presents the experimental measurements
of the total elastic cross sections by Underwood-Lemons
et al. [30]. However, the problem with this and the two other
[12,34] measurements for CF3Cl is that it is not quite clear
what is measured there. The total elastic cross section for a
polar-symmetric top is divergent even if rotations are included
[35]. Only the inversion splitting, which is extremely small
for CF3Cl, makes the elastic cross section finite [36]. This
means that the scattering amplitude at small scattering angle θ

behaves like 1/θ , and only at an extremely small angle θinv does
it become finite. In the experiment of Underwood-Lemons
et al. [30], the elastic cross section is determined from the
transmitted current under the assumption that transmitted
electrons are not scattered, so what is measured is in fact
the cross section integrated from a small angle θmin to 180◦,
where θmin is determined by the geometry of the experimental
apparatus, and θmin is, most likely, significantly greater than
θinv. In the experiment of Mann and Linder [12] the total cross

section is obtained by extrapolating the measured differential
cross section to θ = 0. This procedure also gives an underes-
timated total cross section since the actual differential cross
section behaves as 1/θ2 at small angles if θ > θinv. We think,
therefore, that comparison between theory and experiment for
the total (integrated) cross section is meaningless unless the
angle θmin can be found from the experimental geometry. The
purpose of plotting the experimental cross section in Fig. 1 is
to demonstrate that our calculated resonance contribution is
consistent with experimental results.

At larger C-Cl separations, where the resonance turns into
a bound state, the corresponding anionic bound-state energies
were calculated by diagonalizing the (N + 1)-electron Hamil-
tonian constructed using the same target and scattering CAS CI
model as was used for calculating the resonance, except that
the integrals involving continuum GTOs were not restricted
to the inner region of the sphere [15]. This allows a good
representation of the diffuse character of the anionic bound
state with energy close to the autodetachment limit.

The position and width of the fixed-nuclei resonance as
a function of nuclear geometry were obtained by fitting,
at each nuclear geometry of interest, the eigenphases at
near-resonance energies to the Breit-Wigner formula with
energy-dependent background. The energy dependence of
the background is predominately determined by the dipole
moment of the neutral target. The corresponding value was
obtained from the calculation of the target properties for
every nuclear geometry and used as a parameter in the
fitting procedure for this geometry. Fitting of the eigenphases
calculated at the equilibrium geometry using target model 2
gives a resonance position 1.954 eV, which is in a good
correspondence with the experimental value of 1.83 eV from
Aflatooni and Burrow [25].

IV. CALCULATIONS OF THE NUCLEAR DYNAMICS

A. Dissociative electron attachment

The total DEA cross section calculated using our two-
dimensional LCP approach is plotted in Fig. 2. This graph com-
pares our results with previously published one-dimensional
nonlocal calculations [13]. Our previously published two-
dimensional LCP calculations [1] give a significantly larger
magnitude for the total DEA cross section than do the
experimental works [25,37] and the one-dimensional nonlocal
semiempirical calculation [13]. This problem was attributed
to an incorrect dependence of the width function (which was
arbitrarily extended to two dimensions) on the coordinate r . As
can be seen in Fig. 2, results of our present two-dimensional
LCP calculations using the complex PES constructed from
the R-matrix results are in very good agreement with the
nonlocal calculations as well as with experimental results due
to Aflatooni and Burrow [25]. Although our total cross section
is smaller than the experimental results of Underwood-Lemons
et al. [37], it is closer to the measurements of Aflatooni and
Burrow [25], and the position of the peak is in very good
correspondence with this experimental work.

All this suggests that the two-dimensional PES constructed
from the results of the R-matrix calculations has a more correct
dependence on both reaction coordinates than the previously
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FIG. 2. (Color online) Total DEA cross section calculated us-
ing the model discussed in the present work compared with the
experimental results of Underwood-Lemons et al. [37], Aflatooni
and Burrow [25], and with previously published one-dimensional
nonlocal calculations by Wilde et al. [13].

published model [1]. It results in a correct shift of the peak
in the total DEA cross section with respect to the vertical
attachment energy as well as in the correct magnitude of
the cross section. One additional note regarding the complex
PES should be made here. The DEA cross section is related
to the position of the crossing seam between the neutral
and anionic PES. Its shape and position with respect to the
minimum of the neutral PES determine where the anionic
system becomes stable. Subsequently, it has an influence on
the survival probability. The crossing seams obtained from the
present R-matrix calculations and from the model potential [1]
are compared in Fig. 3. The relative position of the crossing
seam is similar in both models. This supports our argument
that the difference in magnitude of the DEA cross section

FIG. 3. (Color online) Crossing seam between the neutral and
anionic two-dimensional PES obtained from the present R-matrix
calculations compared with the model potential used in Ref. [1]. The
cross (circle) denotes the equilibrium geometry of the neutral PES
obtained in the present work (used in Ref. [1]).

between our present model and the results published in Ref. [1]
is mainly due to the different width function �(ρ,r), rather
than due to the substantial difference in the crossing seam
between these two models. The oscillatory structure in the
crossing seam obtained from the present R-matrix calculations
is mainly an artifact of a too-low density of the grid of nuclear
geometries used to calculate the PES. In addition, the fact
that the complex energies in the region where the anion is
metastable are obtained in different way than are the energies
of the bound anion also raises the numerical issues with
exact determination of the crossing seam and also partially
contributes to the oscillatory structure present in Fig. 3.

Comparisons of local two-dimensional and one-
dimensional results with nonlocal one-dimensional results are
given in Refs. [1,38]. The agreement between the local and
nonlocal results is very good because the resonance occurs at
a relatively high energy, and the long-range interaction plays
a minor role.

Figure 4 shows the distribution of different final vibrational
states of the CF3 fragment calculated using the complex PES
constructed from the R-matrix results. In Fig. 5 we show the
distribution calculated using the PES obtained in Ref. [1] but
corrected in such a way that PES in the intermediate region
smoothly turns into the PES in the asymptotic region, avoiding
the mismatch discussed in Sec. II. Both graphs show that the
low vibrationally excited states of the CF3 fragment will be
more populated than the ground state and, in both figures, the
positions of the peaks rise with increasing quantum number ν.
However, each calculation predicts the highest population for
a different excited state. While our complex PES constructed
from the R-matrix results gives the highest peak for ν = 1,
the PES described in Ref. [1] leads to the highest peak for
the vibrational state ν = 3, as can be seen in Fig. 5. The total
DEA cross section is mainly determined by the complex PES in
the region where the anionic system is not bound and does not
strongly depend on the behavior of the PES in the region where
the negative ion is stable. On the other hand, the distribution
of vibrational states of the fragment is strongly influenced
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FIG. 4. (Color online) DEA cross sections for different final
vibrational states of the fragment CF3 calculated using the complex
PES constructed from our R-matrix results.
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FIG. 5. (Color online) DEA cross sections for different final
vibrational states of the fragment CF3 calculated using the model
complex PES published previously [1] after the correction of the
asymptotic behavior of channel potentials.

by the final-state interaction in the region where the anion is
stable. In both calculations shown in Figs. 4 and 5, this region
of the PES was partially modeled (as discussed above and
in Ref. [1]) to achieve a correct asymptotic behavior of the
potential. Although our PES constructed from the R-matrix
results is free from several limitations of the surface described
in Ref. [1], the extrapolation of the bound-state anionic surface
in both cases makes it difficult to decide how quantitatively
reliable this distribution is in both calculations.

B. Vibrational excitation

Results of the resonant VE calculations using the PES
based on the R-matrix results are plotted in Fig. 6. This
figure shows the cross section for VEs of the target from the
ground state to the lowest excited state of the C-Cl stretching
mode [denoted as (0,1) in the figure] and the lowest excited
state of the C-F deformation mode [denoted as (1,0) in the
figure]. These graphs show a very good agreement with our
previous calculations [1] for both vibrational modes. However,
our calculations agree with experimental results by Mann and
Linder [12] for the umbrella mode, while both our models
lead to an approximately three-times-smaller magnitude of
the cross section for the C-Cl stretching mode excitation than
that measured by Mann and Linder [12].

The previously published one-dimensional nonlocal calcu-
lation of VEs [13] takes into account only the C-Cl stretching
vibrational mode, and the width function �(R) was adjusted to
give cross sections corresponding to experimental results for
this stretching vibrational-mode excitation due to Mann and
Linder [12]. The low values of the present cross sections can
be partially explained by introducing additional channels of
vibrational excitation in our two-dimensional calculations and
lower flux toward the channel (0,1).

Although Fig. 6 shows that the model constructed using
the R-matrix results leads to VE cross sections very similar
to those calculated in Ref. [1], Fig. 7 shows that these two
models predict different results for higher final vibrational
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FIG. 6. (Color online) VE cross sections from the ground vi-
brational state to the lowest excited state of the C-Cl stretching
mode (a) and the lowest excited state of the umbrella mode (b).
Results calculated using the R-matrix complex PES are compared
with cross sections obtained from the previously published model [1]
and experimental results due to Mann and Linder [12].

states. To the best of our knowledge, there are no experimental
data for VEs to these states to compare with our cross
sections. The fact that the differences between our two models
become more significant with increasing final vibrational state
is understandable since the target vibrational eigenfunctions
become spatially more extended with increasing vibrational
state (ν2,ν3). This means that the different behavior of the
corresponding complex PES farther from equilibrium will have
a larger influence on the results, as can be seen from Eq. (4).
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FIG. 7. (Color online) VE cross sections for excitation from
the target vibrational ground state to higher excited states. Results
obtained from the complex PES constructed from the R-matrix results
(solid line) are compared with cross sections calculated using the PES
described in Ref. [1] (dashed line).
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V. CONCLUSION

The ab initio R-matrix method allowed us to calculate
the complex two-dimensional PES for CF3Cl collisions. We
then used the DVR method to obtain the solution of coupled
stationary equations (4), and DEA and VE cross sections for
the e-CF3Cl collision process. Our results for the total DEA
cross section and the cross section for VE of the umbrella mode
agree quite well with experiments. In addition we obtained the
final-state vibrational distribution in the CF3 fragment free of
the instabilities found in our previous calculations. However,
our cross sections for VE of the C-Cl stretching mode are
significantly lower than the experimental results of Mann and
Linder [12] and the results of previous semiempirical one-
dimensional calculations [13]. This is something one might
expect because of the extra inelastic channels of excitations

of the umbrella mode, which lead to a redistribution of the
flux. However, disagreement of the present two-dimensional
results with the experiment is puzzling and requires further
investigation.
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